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Solution of Some Special Games



2 X 2 Games Revisited

 We have seen that any 2 x 2 matrix game can be solved
graphically. There are also explicit formulas giving the value
and optimal strategies with the advantage that they can be
run on a calculator or computer.

* Consider the game with matrix and strategies

A= [GH r:"]"l playerI : X = (x,1 — x): playerll:Y = (y,1 — y).
_”‘2[ 199

F(X,Y)=XAYT

= ryla; — ayja —az + az) + x(ayy — azz) + ylaz; — azx) + ass.
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Formulas

e Theorem 2.1.1 In the 2 x 2 game with matrix A, assume that there are no pure
optimal strategies. /f we set

. 199 — 21 " a2 — aj2

r = —

1] — a1 — a9y + a9y 111 — 12 — @921 + as»

then X* = (x*,1 —2%),Y* = (y*, 1 — y*) are optimal mixed strategies for players
I and II, respectively. The value of the game is

R 11022 — @1202]
. L .
v(A) = E(X",Y") = .
11 — (12 — @21 + 429
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Formulas (conta)

e Derivation of formulas

fle,y) = E(X.Y), X = (2,1 —2),Y = (y,1 —y),0<z,y <1.Then

flr,y) = (x,1 — 1) {“” ”’"-1 { s ] (2.1.1)

121 199 1 — y

= 3?[11}((111 - I’I-zl) + (1 — y)(ﬂlz - {1-22)] + a1 — agq.
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Formulas (conta)

) )
— Let i = ya + 3 =0 and —f ro+ v = 0,
O dvy

where a = (a;1 — a2 — as1 + as). 3= 1(ajx — as). v = (a — a»).

— Notice that if o — (), the partials are never zero (assuming /7.7 # 0),
and that would imply that there are pure optimal strategies (in other
words, the min and max must be on the boundary).

— Solve where the partial derivatives are zero to get

* ki 122 2] + ] 199 — (119
P = ——_ = and Y= —— =
¥ ] — ajo — a91 + a99 () aj1 — a2 — d9] + A9

. - 2 5
Figure 2.1 1s the graph of f(r.y) = X Ay ! taking A = [ o l] :
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Formulas (conta)

An Interior Saddle

0.0
0.25 0.0
0.5
0.75 10
X

Figure 2.1 Concave in x, convex in y, saddle at [%. 3).
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Formulas (conta)

— This is a saddle and not a min or max of f. The reason is because if we
take the second derivatives, we get the matrix of second partials
(called the Hessian):

— f-i'-l" f.r';,f o () ('}
H = [;‘-ﬂ_;_ f_,;_,j B L\ u]

Since det(H) = —a” < 0 (unless @ = 0. which is ruled out) a theorem
in elementary calculus says that an interior critical point with this
condition must be a saddle.

* The calculus definition of a saddle point of a function f(x, y) is a point so that in
every neighborhood of the point there are x and y values that make f bigger and
smaller than f at the candidate saddle point.




Formulas (conta)

e Remarks

— The main assumption you need before you can use the formulas is
that the game does not have a pure saddle point.

e Check whether @11 — @i2 — asy + agy = 0, vt = ¢~

— A more compact way to write the formulas and easier to remember is

N

4 [1

] and Y = '-1

(11)A* L} (11)A~ _l}
det(A)

11)A°
x =Y

value( A) =

22 )2
A" = and {'lﬁt(ﬂ) = A11(l992 — d120a97.
—a2 ayy
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Example 2.1

: -2 5
* Inthe game with A = [.) f , v =1< ot =2

— There is no pure saddle.
— Apply the formulas to get

X*=(g.5)andY"* = (5.3), v(A) =

1
8" 8 2

x
| ] AL

— Notice here that
A* = [ L= ] det(A) = —12.

9 9

=

The matrix formula for player | gives

v (11)A* (1T
T ((1DAf(1 1)T) 88/
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Invertible Matrix Games



Invertible Matrix Games

e Theorem 2.2.1 Assume that

1. A, «, has an inverse A"
2. J, ATV A0 T, =(11 --01)

3. v(A) #0.
Set X = (z1,...,2,).Y = (y1,.-.,Ym ), and
1 - A-LgT J, A1
v = —, YT = = X = /
JA-LT] J,A=LT] J AT
Ifr; z0,i=1,...,nandy; = 0,5 = 1,...,n,we have thatv = v(A) is the value

of the game with matrix A and (X,Y') is a saddle point in mixed strategies.
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Invertible Matrix Games (contx)

e Formulation of Theorem 2.2.1

— Suppose that player | has an optimal strategy that is completely mixed.
By the Properties of Strategies (1.3.1), property 3, every optimal Y
strategy for player Il, must satisfy

E(i.Y) =;AY ! = value(A), foreveryrowi = 1,2,....n.

— If we write J,, = (11 ---1) for the row vector consisting of all Is, we
can write

v(A)

AY' =v(A) I =| : |. (2.2.1)

v(A)
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Invertible Matrix Games (contx)

— The value of the game cannot be zero.

— Now, if v(A) = 0, then AYT =0J! =0 2Y =A4""0=0
where Y = (y1.....Un) .
But that is impossible if Y=0 is a strategy (the components must add to

1).
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Invertible Matrix Games (cont)

— Multiply both sides of (2.2.1) by A™1, we get

ATTAYT = vT =p(A)A T

This gives us Y if we knew v(A).
— With the extra piece of information X:’:l Y = J, YT =1, weget

J YT =1 =0(A)J, A I,

and therefore

1 - AT
andthen Y/ = L

HA) = _
vlA) = =TT J, A1)

Chih-Wen Chang @ NCKU Game Theory, Ch2.2
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Invertible Matrix Games (cont)

* \Verification
— Let Y’ € S,, be any mixed strategy and let X be given by the formula

X = Sn A Then, since J,, Yl = 1, we have
T g AT e = WE AR
E(X,Y') = XAY"" = —J, A"t AY"!
( ) / T J
1 N
= m—
T A=1J]
1
T T AT

— Similarly, forany X' € S,,, E(X".Y) = v .
— So (X.Y) isasaddle and v is the value of the game by the Theorem
1.3.7 or property 1 of (1.3.1).
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Invertible Matrix Games (contx)

e Remarks

— This method will work if the formulas we get for Xand Y end up
satisfying the condition that they are strategies. If either X or Y has a
negative component, then it fails.

— The strategies do not have to be completely mixed as we assumed
from the beginning, only bona fide strategies.

— In order to guarantee that the value of a game is not zero, we may add
a constant to every element of A that is large enough to make all the
numbers of the matrix positive.

* Since v(A + b) = v(A) + b, where b is the constant added to every element, we can
find the original v(A) by subtracting b.

* The optimal mixed strategies are not affected by doing that.




Example 2.2

* Consider the matrix 0 1 -9
A= 1 -2 3
-2 3 -4

— The matrix doesn’t have an inverse because the determinant of A is 0.

— Add 5 and get the inverse given by B

5 6 3 61 —18 -39
A+5=16 3 8 b’-—% —18 4 22
3 8 1 ) -39 22 2]
— Calculate using the formulas v = 1/(.J3B.J; ) = 5. and

11 /11 1
X =v(JsB) =~ =. - dy=_(= 2 2]
X = v(JsB) (.1 2 -1) . \1" 2 1)

— The value of our original game is v(A) = v — 5 = 0.

Chih-Wen Chang @ NCKU Game Theory, Ch2.2
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Example 2.3

Consider the matrix

I 1 2
A= |T 2 2
h 2 8
— Then it is immediate that v~ = ©" = 2 and there is a pure saddle

X* = (0,0,1).Y" =1(0,1,0).
— Ifwetry touse Theorem 2.2.1, we have det(A) = 10. and

| 6 —2 —1

Al =21 —-23 11 3
2 9 3 1

= 2 2

Chih-Wen Chang @ NCKU Game Theory, Ch2.2
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Examp|e 23 (cont’d)

If we use the formulas of the theorem, we get

. 3 1
v=—1, X = E‘(‘q)(J:;“:’l lJ = (3—5—5) .

— Obviously these are completely messed up (i.e., wrong). The problem
is that the components of X and Y are not nonnegative even though

they do sum to 1.

and
_55

5 !

-
——
8

}.r — !"(;'1_1-}_‘;”}! — (

o
Ut —
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Examp|e 23 (cont’d)

 Maple commands to work out the invertible matrix game.

restart:with(LinearAlgebra):

A:=Matrix([[0 ,1 ,-2 ]1,[-1 ,-2 ,3],[2 ,-3 ,-4 11);
Determinant (A) ;

A:=MatrixAdd( ConstantMatrix(-1,3,3), A );
Determinant (A) ;

=A"(-1);

:=Vector [row] ([1 ,1 ,1 1);
.B.Transpose(J);

:=1/(J.B.Transpose(J));

:=v*(J.B);

:=v*(B.Transpose(J));

WoOW W OV W VNV Y Y WYY

T o T PR Sy v

Chih-Wen Chang @ NCKU Game Theory, Ch2.2
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Completely Mixed Games

Definition 2.2.2 A game is completely mixed if every saddle point consisting of
irmrrf;ifs X =(x1y...,xn) € Sp, Y = (y1,.

> 0,0 =1,2,..., H{Hl{c"__}f:}UJ_l
is used with positive probability.

o yYm) € S, satisfies the property
...... , m. So, every row and every column

— There is only one saddle point in a completely mixed game.
— If you know that v(A) # 0, then the game matrix A must have an
inverse, A~ '. The formulas for the value and the saddle

1 - -
“{;.—1) - ».Iir; 44_|*}:I ! JX,* — 'i(*l) -Iu 44 1- Ei[ld }.r*." — '{’(44_)}1_1*}:

from Theorem 2.2.1 will give the completely mixed saddle.
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Example 2.4

 Hide and Seek. Suppose that we have a; > as > --- > a,, > 0.
The game matrix is

(ap 0 0 -+ 0]

0 a, 0O --- 0
A=

0 0 0 - an]

— We think that the game is completely mixed.

— Since v~ = 0 and v" = a,. the value of the game satisfies
0<wv(A) <a,.
— Choosing X = (1/n

..... 1 /n) we see that miny XAY ! =a,/n >0
so that v(A) > 0.
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Example 2.4 (conva)

— Itis also easy to see that

1
— 0 0
(1]
1
0o — 0
Al = az
0 0 0

0
0
i

ayn |

— Then, we may calculate from Theorem 2.2.1 that

Chih-Wen Chang @ NCKU

] 1
v(A) = —
A- 1 1 1
JoATT L 1 1
(1l 2 iy
1 1 1
xﬂzym(—n_ ..... -—)zrh
a) as y

Game Theory, Ch2.2

25



Example 2.4 (contq)

— Notice that forany 7 = 1,2, ..., n, we obtain
1 1 1
l<ai| —+—4+-- 4+ —
(i1 (12 Ly

sothat v(A) < min(ay.as....,a,) = a,.

Chih-Wen Chang @ NCKU Game Theory, Ch2.2
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Symmetric Games



Skew Symmetric

Skew symmetric

— In symmetric games, the players can use the exact same set of
strategies, and the two players can switch roles. Such games can be

identified by the rule that A = — AT

* |If Ais the payoff matrix to player |, then the entries represent the payoffs to player |
and the negative of the entries, or —A represent the payoffs to player Il

* This means that from player II’s perspective, the game matrix must be —AT

e Because A is the payoff matrix to player | and — A7 is the payoff to player Il. Set
the payoffs to be the same and get A = — AT,




Symmetric Games

e Theorem 2.3.1 For any skew symmetric game v(A) = 0 and if X* is optimal for
plavyer I, then it is also optimal for player I1.

Proof. Let X be any strategy for I. Then
EX,X)=XAXT=-XATX"=—-(XAXHT =X AXT - —E(X, X).
Therefore (X, X ) = 0 and any strategy played against itself has zero payoff.

Let (X, Y™) be a saddle point for the game so that F(X,Y") < E(X*,Y") <
E(X*,Y), for all strategies (X,Y’). Then for any (X, Y), we have

EX,)Y)=XAY = X AT YT = (X AT Y)Y = v AXT = -E(Y, X).
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Symmetric Games (conra)

Hence, from the saddle point definition, we obtain
E(X,)Y")=—-FEY" ", X)<EX",Y")=-FEY", X")<EX"Y)=-EY, X").
Then

—BE(Y*, X)< —-E(Y",X")< —E(Y.X") =
E(Y*,X)> E(Y",X") > E(Y,X").

But this says that Y * is optimal for player [ and X * is optimal for player Il and also
that £(X*,Y") = -E(Y*". X") = v(A) = 0.
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Example 2.5

e General Solution of 3 x 3 Symmetric Games.

— For any 3x3 symmetric game we must have

0 a b
A= —a 0 e
—b —c 0

Any of the following conditions gives a pure saddle point:
. a>0,b> 0= saddle at (1, 1) position,
2. a <0.c >0 == saddle at (2, 2) position,

3. b <0,c <0 == saddle at (3, 3) position.

— Here’s why. Let’s assume that @ < 0.¢ > 0. In this case if b < 0 we get
v~ = max{min{a, b},0, —c} = 0and v* = min{max{—a.—-b}.0,¢} = 0,
so there is a saddle in pure strategies at (2.2). All cases are treated similarly.
To have a mixed strategy, all three of these must fail.
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Example 2.5 (contq)

— We next solve the case a > 0.5 < 0,¢ > 0 so there is no pure saddle and
we look for the mixed strategies.

Let player I's optimal strategy be X * = (x,,x2.23). Then

EF(X™,1) = —axy—bxrs>0=1v(A)
F(X"2) = ary—cxz3 >0
E(X",3) = bri+cry =0,

Each one is nonnegative since E(X*.Y) > 0 = v(A), forall Y. Now, since
a>0,b<0,c>0we get

I3 T2 I I3 L2 I
=>=, =2x=, >
a —b c a —b c
S0 T Az T T
s 3 ol 2 . l . 3
> > >
a —b c a
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Example 2.5 (contq)

let 3 = aA.z2 = —bA, x; = cA. Since they must sum to one,
A = 1/{a — b+ c). We have found the optimal strategies X" = Y* =
(a A, —b A. ¢ A). The value of the game, of course is zero.

— For example, the matrix

0 2 -3
A=| -2 0 3
3 -3 0

is skew symmetric and does not have a saddle point in pure strategies. Using
the formulas in the case a > 0.0 < 0.¢ > 0. we get X = (;5 -g’ ) =YY",
and v(A) = 0.
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Example 2.6

 Two companies will introduce a number of new products that
are essentially equivalent. They will introduce one or two
products but they each must also guess how many products
their opponent will introduce.

The payoff is determined by whoever introduces more
products and guesses the correct introduction of new
products by the opponent. If they introduce the same number
of products and guess the correct number the opponent will
introduce, the payoff is zero.




Examp|e 26 (cont’d)

Here is the payoff matrix to player | and strategies represent
(introduce, guess).

player I/ player IT | (1.1) (]E) (2.1) (2,2)

(1.1) 0 1 -1 =1
(1.2) ~1 0o -2 -1
(2,1) 1 2 0 |
(2,2) 1 1 1 0
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Examp|e 26 (cont’d)

— This game is symmetric.
— Drop the first row and the first column by dominance and are left with

the following symmetric game:

0 2 -1
A= 2 0 1
1 1 0

— Since a < 0,¢ > 0, we have a saddle point at position (2, 2).
We have v = 0, X* = (0,0.1,0) = Y*.
— Each company should introduce two new products and guess that the

opponent will introduce one.

Chih-Wen Chang @ NCKU Game Theory, Ch2.3
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Example 2.7

A game with the object of trying to find the optimal point at
which to shoot. Each pistol has exactly one bullet. They will
face each other starting at 10 paces apart and walk toward
each other, each deciding when to shoot. A player does not
know whether the opponent has taken the shot.

— In a silent duel a player does not know whether the opponent has
taken the shot.

— In a noise duel, the players know when a shot is taken.

— This game is assumed to be a silent duel because it is more interesting.



Example 2.7 (contq)

e Suppose that they can choose to fire at 10 paces, 6 paces, or 2
paces. Suppose also that the probability that a shot hits and
kills the opponent is 0.2 at 10 paces, 0.4 at 6 paces, and 1.0 at
2 paces. An opponent who is hit is assumed killed.




Example 2.7 (conra)

The row and column players are Burr(B) and Hamilton (H).

The player strategies consist of the pace distance at which to
take the shot. The payoff to both players is +1 if they kill their
opponent, -1 if they are killed, and O if they both survive.
B/H 10 6 2
10 0 0.12 —0.6
6 10.12 0 —0.2
l 2 | 06 02 0
— (+1)+ Prob(H misses at 10) - Prob(Kill H at 6)
- (—1) - Prob(Killed by Hat 10) = 0.8 - 0.4 — 0.2 = 0.12.
— This is a symmetric game with a pure saddle at position (3, 3) in the
matrix, so that X* =(0,0,1) and Y* =(0,0,1). Both players should wait
until the probability of a kill is certain.
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Example 2.7 (conra)

 Modify the rules of the game by assuming that the players will
be penalized if they wait until 2 paces to shoot.

B/H 10) O 2
10 0 —0.12 1
G | 0.12 0 —0.2
% | 0.2 ()

— This is still a symmetric game with skew symmetric matrix, so the

value is still zero and the optimal strategies are the same for both Burr
and Hamilton.
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Example 2.7 (conra)

— Find the optimal strategy for Burr in the following procedure:
E(X*,1)=01222, —1-25>0
E(X".2)=-012x,4+02x3 >0
E(X",3)=x,-0212>0

These give us

I3 L3 J I

Lo > ———, = . and — > 1o,
22012 012 © 0.2 02 = 2

. 0.2 0.2 1 0.12
T = — , Tp = ——, Iy = —
T 0121402 1320 T 13T 130

or x1 = 0.15, 12 = 0.76, 23 = 0.09

So each player will shoot with probability 0.76 at 6 paces.

Chih-Wen Chang @ NCKU Game Theory, Ch2.3
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Matrix Games and Linear Programming <



Linear Programming

e Linear programming is an area of optimization theory that is
used to find the minimum (or maximum) of a linear function
of many variables subject to a collection of linear constraints
on the variables.

— Simplex method will quickly solve very large problems formulated as
linear programs.

— Using linear programming, we can find the value and optimal
strategies for a matrix game of any size without any special theorems
or techniques.

 Two ways to set up a game as a linear program
— To do by hand since it is in standard form (method 1).
— Use Maple and involve no conceptual transformations (method 2).



Standard Form

* Alinear programming problem is a problem of the standard
form (called the primal program):

Minimize z = ¢ - X
subjecttox A > b, x > 0,
where ¢ = (¢g..... Cn)e X = (271.....: ry). A, 1S ann x m matrix.
and b =(by..... b,,).
— The primal problem seeks to minimize a linear objective function,
z(X) = ¢ - X, over a set of constraints (viz., x - A > b) that are also linear.

— The minimum and maximum of a linear function over a variable that is
in @ convex set must occur on the boundary of the convex set.

— The method for solving a linear program is to go through the extreme
points to find the best one. That is essentially the simplex method.
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Standard Form (conta)

 For any primal there is a related linear program called the
dual program:

Maximize w = v b’

subject to A }_-Jr- < e y >0

— Duality theorem states that if we solve the primal problem and obtain
the optimal objective z = z*, and solve the dual obtaining the optimal

w=w?* then z*=w?*
— The two objectives in the primal and the dual will give us the value of
the game.



Setting up the Linear Program: Method 1

* Procedure

— Assume that v(A) > 0. Now consider the properties of optimal

strategies (1.3.1). Player | looks for a mixed strategy X = (x.....: ')
so that
E(X,j))=XA; =141+ +Tpap; 2v,1 <7< m. (2.4.1)

— Itis player I's objective to get the largest value possible.
— Change variables by setting

p; = —? | E 1< n. P = {,“1 ***** ,tUHJ‘
.

This i1s where we need v > 0. Then Z r; = 1 1implies that

- ]
Z‘p, = :

=1
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Setting up the Linear Program: Method 1 (conta)

— Thus maximizing v is the same as minimizing > p; 1/v.
— Divide the inequalities (2.4.1) by v and switch to the new variables, we
get the set of constraints

oy o v
—ay; +---+ t_ Ap; = P1a1; + -+ ppay; =21, 1 <) < m.

F1

— So the linear programming

Minimize z; = p J! = Zp,;* J, = (1.1...., 1)

1=1

subjectto: p A > J,,,. p > 0.

Player I's program =
y prog

Chih-Wen Chang @ NCKU Game Theory, Ch2.4 47



Setting up the Linear Program: Method 1 (conta)

— Notice that the constraint of the game ), i = 1 is used to get the
objective function! It is not one of the constraints of the linear
program. The set of constraints is

pPA=J,—p-A;=1l7=1,..., m.
Alsop Z0Omeansp;, > 0,2 = 1,.... n.

— Unwinding the formulation back to our original variables, we find the
optimal strategy X for player | and the value of the game as follows:

(the minimum objective z;. labeled z;")

| 1 1
value(A) = —57—— = — and x; = p; value(A).
| > P A |
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Setting up the Linear Program: Method 1 (conta)

e Similarly, for player Il we obtain

Maximize zy =q J/!. J,.=(1.1,..., 1),

Player II's program = -
g > Progrd { subjectto: Agqf < JI' .q>0.

and

1 1 |
't‘nfuf-{.-l) = ——— = — and y; = q; value(A).

Z_j:l d; :ﬁ

— Player II’s problem is the dual of player I’s.

Chih-Wen Chang @ NCKU Game Theory, Ch2.4
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Duality Theorem

e Theorem 2.4.1 (Duality Theorem) If one of the pair of linear programs (primal and
dual) has a solution, then so does the other. If there is at least one feasible solution
(i.e., a vector that solves all the constraints so the constraint set is nonempty), then
there is an optimal feasible solution for both, and their values, i.e. the objectives, are
equal.

— This means that in a game we are guaranteed that > — >;; and so the
values given by player I’'s program will be the same as that given by
player II’s program.

— If you had to add a number to the matrix to guarantee that v>0, then
you have to subtract that number from :;. and z;;, in order to get the

value of the original game with the starting matrix A.
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Example 2.8

Use the linear programming method to find a solution of the
game with matrix

— A add 4 to get

-
I

= N o
L
o
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Examp|e 28 (cont’d)

T
— Setting p; = —. and get
.ll

’

1
Minimize z; = p; + p2 + p3 (: _)
v

subject to

Player I's program = { 2p; + 6ps + 4p3 > 1
Sp1 +p2 +6p3 > 1
dpr +3p2+p3 = 1

%\
— After finding the p,’s, we will set
1 I

li —_—

zf B P1+ P2 +P3

and then the original value of A is the value of A" subtracts 4.

— x; = v p; will give the optimal strategy for player I.
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Examp|e 28 (cont’d)

e Similarly, setting ¢; = (y;/v). player Il’'s problem is

Maximize z;y = q1 + q2 + g3 (: })

subject to

Player IT’s program = ¢ 2g; + 5g2 +4q3 < 1

6g1 +q2 +3¢3 < 1

1gy +6g2 +q3 < 1

qi > 0 j=1,2,3.
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Examp|e 28 (cont’d)

 The simplex method is part of all standard Maple and
Mathematical software, so we will solve the linear programs

using Maple. For player | we use the Maple commands:
> with(simplex) :
cnsts:={2+p[1]+6*p[2]+4*p[3] >=1,
S+p[1]+p[2]1+6%p[3] >=1,4*p[1]1+3*p[2]+p[3] >=1};
> obj:=p[1]+p[2]+p[3];
> minimize(obj,cnsts,NONNEGATIVE) ;
— We get the solutions

W

21 13 O
) = 9 —— and p )o + Py =
=T = 7 1m; PLEP2HPs = 1o
1 .
! . 2 5 * 21 13 1
v(4) 35 v(A4) = [;? —4d= "%% , X7 =(55.35335)
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Examp|e 28 (cont’d)

* We may also use the Optimization package in Maple to solve
player I’s program:

> with(Optimization):

> cnsts:={2*p[1]+6xp[2]+4*p[3] >=1,
5*p[1]+p[2]+6%p[3] >=1,
4xp[1]+3*p[2]+p[3] >=1};

>obj:=p[1]+p[2]+p[3];

>Minimize(obj,cnsts,assume=nonnegative) ;

— We get the solutions (in floating-point form)
pll] = 0.169. p[2] = 0.1048. p[3] = 0.00806
p1 + p2 + p3 =0.281806

v = 1/0.28186 — 4 = —0.457.
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Examp|e 28 (cont’d)

* Solve the program for player Il by using the Maple commands:

> with(simplex) :

> cnsts:={2*q[1]+5*q[2] +4*q[3] <=1,
6xq[1]+q[2]+3*q[3]<=1,
4%q[1]+6%q[2] +q[3]<=1};

> obj:=ql1]+q[2]+q[3];

> maximize(obj,cnsts,NONNEGATIVE) ;

— We get the solutions

13 10 12 ;
gy = — = —. 1 g+ q3 = 1/v =
R DY R DY N DY

-“[;.'1!} — 124 {1(1;1) — 124 o 1

35 35

35

16
35 ,

ye_ 124 (13 10 127 (13 10 12
© 35 \ 12471247 124 3535735 )
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Examp|e 28 (cont’d)

e Remark

— The linear programs for each player are the duals of each other.
Precisely, for player | the problem is

Minimize ¢ - p. ¢ = (1.1, 1) subject to Alp >b.p>0.

where b = (1.1,1).

— The dual of this is the linear programming problem for player II:

Maximize b - q subjectto Aq <c¢. q = 0.
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Example 2.9

A Nonsymmetric Noisy Duel. We consider a nonsymmetric
duel at which the two players may shoot at paces (10,6,2)

with accuracies (0.2,0.4,1.0) each.
— Rules
e [f only player | survives, then player I receives payoff a.
¢ If only player II survives, player I gets payoff b < a. This assumes that the
survival of player II is less important than the survival of player L.
® If both players survive, they each receive payoff zero.

® [f neither player survives, player | receives payoft g.
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Examp|e 29 (cont’d)

— Expected payoff matrix for player | (take a = 1,6 = %4’; =0):

/1 | (0.2.10) (0.4.6) (1,2)
(0.2.10) 0.24 0.6 06
(0.4.6) 09 036 0.70
(1.0.2) 0.9 0.8 0

The pure strategies are labeled with the two components
(accuracy,paces).
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Example 2.9 (contq)

e Solution

— From the general formula,

axr + b(1 — x) if v < vy,
E((x,i),(y.j)) = ar +bx + (g —a—b)z? ifx=y;
a(l —y) + by if r > .

and

E((x.7).(x.1)) = aProb(Il misses)Prob(I hits)
+ bProb(I misses) Prob(1l hits) + g Prob(I hits) Prob(11 hits)
=a(l —x)r+b(1 —x)r + g(x - x)
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Examp|e 29 (cont’d)

— Use the Maple commands to calculate the constraints:

> with(LinearAlgebra):

> R:=Matrix([[0.24,0.6,0.6],[0.9,0.36,0.70],[0.9,0.8,01]);

> with(Optimization): P:=Vector(3,symbol=p);

> PC:=Transpose(P) .R;

> Xcnst:={seq(PC[i]>=1,i=1..3)};

> Xobj:=add(pl[i],i=1..3);

> Z:=Minimize(Xobj,Xcnst,assume=nonnegative) ;

> v:=evalf(1/Z[1]); for i from 1 to 3 do evalf(v*Z[2,i]) end do;

Alternatively, use the simplex package:

> with(simplex):Z:=minimize(Xobj,Xcnst,NONNEGATIVE) ;
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Examp|e 29 (cont’d)

— Results

7 = [1.821, [p; = 0.968, py = 0.599, pg = 0.254]]
v(A) = 1/1.821 = 0.549
X* = (0.532,0.329,0.140) .

Similar for player II:

Y* = (0.141,0.527,0.331)
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A Direct Formulation Without Transforming:
Method 2

* Problems

— Maximize v

T
Subjectto Y "a;;a) = X'A; = E(X".j)>v. j=1.....m.

— =1

r

— Minimize v
Tr
Subject to Zﬂa_;;uf = ;z’l}'*_’r — E(G, Y )Y<wv, i=1,....n,
T
Z?J; =1.y; =20, 5=1,...,m.
- j=1
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A Direct Formulation Without Transforming:
MethOd 2 (cont’d)

— We can solve these programs directly without changing to new
variables.

— Since we don't have to divide by v in the conversion, we don't need to
ensure that v >0, so we can avoid having to add a constant to A.

— This formulation is much easier to set up in Maple.

— But, if you ever have to solve a game by hand using the simplex
method, the first method is much easier.



Example 2.10

* Solve by the linear programming method with the second
formulation the game with the skew symmetric matrix

— Setup for solving this using Maple.

> with(LinearAlgebra) :with(simplex) :

>#Enter the matrix of the game here,row by row:
> A:=Matrix([[0,-1,1],[1,0,-1],[-1,1,0]]);
>#The row player’s Linear Programming problem:
> X:=Vector(3,symbol= x);

#Defines X as a column vector with 3 components
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Example 2.10 (conta)

> B:=Transpose(X) .A;

# Used to calculate the constraints; B is a vector.
> cnstx:={seq(B[i] >=v,i=1..3),add(x[i],i=1..3)=1};
#The components of B must be >=v and the
#components of X must sum to 1.

> maximize(v,cnstx,NONNEGATIVE) ;

#player I wants v as large as possible

#Hitting enter will give X=(1/3,1/3,1/3) and v=0.

>#Column players Linear programming problem:

> Y:=<y[1],y[2],y[3]>;#Another way to set up the vector for Y.
> B:=A.Y;

> cnsty:={seq(B[jl<=w,j=1..3),add(y[j],j=1..3)=1};

>minimize (w,cnsty,NONNEGATIVE) ;

#Again, hitting enter gives Y=(1/3,1/3,1/3) and w=0.

: . , . 111 -
— Maple gives us the optimal strategies X = 3'3'3 =Y.
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Example 2.10 (conta)

e Remark
— In the Maple statement maximize(v,cnstx,NONNEGATIVE) the term

NONNEGATIVE means that Maple is trying to solve this problem by

looking for all variables > 0.
* |f it happens that the actual value is < 0, then Maple will not give you the solution.

— You can do either of two things to fix this:

I. Drop the NONNEGATIVE word and change cnstx to

> cnstx:={seq(B[i] >=v,i=1..3),seq(x[i] >= 0,i=1..3),
add(x[i],i=1..3)=1};

which puts the nonnegativity constraints of the strategy variables
directly into cnstx. You have to do the same for cnsty.

2. Add a large enough constant to the game matrix A to make sure that v(A) > 0.
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Example 2.11

* Colonel Blotto Games. Suppose that there are two opponents
(players), which we call Red and Blue. Blue controls four
regiments, and Red controls three. There are two targets of
interest, say, A and B.

The rules of the game say that the player who sends the most
regiments to a target will win one point for the win and one
point for every regiment captured at that target. A tie, in
which Red and Blue send the same number of regiments to a
target, gives a zero payoff.




Example 2.11 (conta)

The possible strategies consist of the number of regiments to
send to A and B. The payoff matrix to Blue is

Blue/Red | (3,0) (0,3) (2,1) (1,2)
(4,0) | 0 2 |
(0.4) 0 4 1 2
(3.1) I -1 3 0
(1,3) I 1 0 3
(2,2) -2 -2 2 2

— The Blue strategies (4,0) and (0,4) should be played with the same
probability. The same should be true for (3,1) and (1,3) and Red. So

X =(zy, 21,202,290, 73), 201 + 229 + 23 = 1.

Y = (y1,y1,92,¥2), 2y1 + 2y, = 1.
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Example 2.11 (conta)

— For Red, )
E(1.Y) =4y + 3y2 < v,

E(3.Y) =3y < v, and
E(5.Y) = -4y, + 4y < v.

3ys < 4y + 3y2 < vimplies 3yo < v automatically,

so we can drop the second inequality. Since 2y + 2y2 = 1, we have

3
4y + 3y = y1 + 2 <wv, —4y; +4y, = -8y +2 <.

1 8 28 . .
So we get Y1 = 1’ 2= 1y V=2 and Y* = (l_'&, ﬁ%li)

e , _ 14 14 12 12 14
(E(i.Y"),1=1,2,3,4,5) = (9' 9°9° 9" 9).

so that E(i,Y") < —'h—l i = 1.2,...,5.
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Example 2.11 (conta)

— ForBlue, we have E(3,Y") = 3y2 = 22 < 2% and, because itis a

strict inequality, property 4 of the Properties (1.3.1), tells us that Blue
would have 0 probability of using row 3, that is, 72 = 0.

] 28 , 28
E{A ]-]' — "l-f'l 2-"”.’! 2 U= E b(X 3) — 5.!'] t 211‘;{ = ﬁ .
In addition, we have 211 + &3 — 1.

So the solution yields X* = (3, 5.0,0, §).

— Observations: It is optimal for the superior force (Blue) to not divide its
regiments, but for the interior force to split its regiments, except for a
small probability of doing the opposite.
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Example 2.11 (conta)

* If we use Maple to solve this problem, we use the commands:

>with(LinearAlgebra):
>A:=Matrix([[4,0,2,1],[0,4,1,2],([1,-1,3,0],[-1,1,0,3],[-2,-2,2,2]]);
>X:=Vector(5,symbol=x) ;

>B:=Transpose(X) .A;

>cnst:={seq(B[i]>=v,i=1..4) ,add(x[i],i=1..5)=1};

>with(simplex) :

>maximize(v,cnst,NONNEGATIVE,value);

The outcome is X* = (§.5.0,0,4) and value = 14/9.
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Example 2.11 (conta)

Similarly, using the commands

>with(LinearAlgebra):
>A:=Matrix([[4,0,2,1],[0,4,1,2],([1,-1,3,0],[-1,1,0,3],([-2,-2,2,2]]);
>Y:=Vector (4,symbol=y) ;

>B:=A.Y;

>cnst:={seq(B[jl<=v,j=1..5),add(y[i], j=1..4)=1};

>with(simplex) :

>minimize (v, cnst ,NONNEGATIVE,value);

. - 7 3 32 48 y — 14
resultsin Y- = (5.4.55.55) and v = 5.
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Example 2.11 (conta)

— The optimal strategy for Red is not unique, but all optimal strategies
resulting in the same expected outcome.

— Any convex combination of the two Y*s we found will be optimal for
player Il.

y_l(1 1 8 8 +1 7 3 32 48\
- 2\187187 18718 90° 90" 90 90}

—

(E(i,Y),i = 1,2,3,4,5) = (41, 4 1 13 L
— If blue deviates from the its optimal strategy x+ = (£, 4.0,0,1) by

using (2. 2.1 1 1) Then, E(X.Y)=12 <v=4

gr g g 1; 1]. g -
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Example 2.11 (conta)

 Remark (Maple procedure).
>restart:with(LinearAlgebra) :

>A:=Matrix([[4,0,2,1],(0,4,1,2],(1,-1,3,0],[-1,1,0,3],[-2,-2,2,211);
>value:=proc(A,rows,cols)
local X,Y,B,C,cnstx,cnsty,vI,vII,vu,vl;
X:=Vector(rows,symbol=x): Y:=Vector(cols,symbol=y):
B:=Transpose(X) .A; C:=A.Y;
cnsty:={seq(C[jl<=vIT, j=1..rows),add(y[j],j=1..cols)=1}:
cnstx:={seq(B[i]>=vI,i=1..cols) ,add(x[i],i=1..rows)=1}:
with(simplex):
vu:=maximize(vI,cnstx,NONNEGATIVE) ;
vl:=minimize(vII,cnsty,NONNEGATIVE);
print (vu,vl);
end:
>value(A,5,4);
— The procedure will return the value and the optimal strategies.
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Linear Programming and the Simplex
Method



Standard Linear Programming

 The standard linear programming problem consists of
maximizing (or minimizing) a linear function f : R" — R
over a special type of convex set called a polyhedral set
S c R", which is a set given by a collection of linear constraints
S={xeR" | Ax < b,x > 0}
— A, .« 15 a matrix |

x © [R"™ 15 considered as an m x 1 matrix. or vector

b € R"™ is considered as an n x 1 column matrix

— The extreme points of S are the key.
— An extreme point cannot be written as a convex combination of two

other points of S.
e |If 1= }a.!‘] | fl

Ao, forsome < A< 1,0y €85, 2o € S.thenax = &y =



Standard Linear Programming (contq)

fy Extreme points
— I \

Figure 2.2 Extreme points of a convex sel.

 Here are the standard linear programming problems:

Maximize ¢ - X Minimize ¢ - X
subject to or  subject to
Ax < b, x>0 AX > b, x>0
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Example 2.12

* The linear programming problem is

Minimize z = 2x — 4y
subject to

r+y>5,r—y<l,y+2r<3, >0,y>0,

— Soec=(2,—-4),b=(3.,—1,-3) and
1 1
A=| -1 1
-2 -1

— Graph and find that as z decreases, the lines go up. The furthest we

can go in decreasing z before we leave the constraint set is at the top
extreme point. That pointis (0,3) and so z =-12.
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Chih-Wen Chang @ NCKU

Example 2.12 (conta)

Figure 2.3 Objective Plotted over the Constraint Set

Game Theory, Ch2.5
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The Simplex Method

 The simplex method does not have to check all the extreme

points, just the ones that improve our goal.

— The first step in using the simplex method is to change the inequality
constraints into equality constraints Ax = b (use slack variables).

— We assume that S # (). A vector d # 0 is an extreme direction of S

ifand onlyif Ad =0andd > 0.

— The extreme directions show how to move from extreme point to
extreme point in the quickest possible way, improving the objective
the most.

* |f we are at an extreme point which is not our solution, then move to the next
extreme point along an extreme direction.



The Simplex Method Step by Step

|. Convert the linear programming problem to a system of linear equations using
slack variables.

2. Set up the initial tableau.

3. Choose a pivot column.

Look at all the numbers in the bottom row, excluding the answer column. From
these, choose the largest number in absolute value. The column it is in is the
pivot column. If there are two possible choices, choose either one. If all the
numbers in the bottom row are zero or positive, then you are done. The basic
solution is the optimal solution.
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The Simplex Method Step by Step (conta)

4, Select the pivot in the pivot column according to the following rules:

(a) The pivot must always be a positive number. This rules out zeros and
negative numbers.

(b) For each positive entry b in the pivot column, excluding the bottom row,
compute the ratio % where a 1s the number in the rightmost column in
that row.

(¢) Choose the smallest ratio. The corresponding number b which gave you
that ratio is the pivot.

5. Use the pivot to clear the pivot column by row reduction. This means making
the pivot element | and every other number in the pivot column a zero. Replace
the = variable in the pivot row and column 1 by the x variable in the first row
and pivot column. This results in the next tableau.
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The Simplex Method Step by Step (conta)

6. Repeat Steps 3—5 until there are no more negative numbers in the bottom row
except possibly in the answer column. Once you have done that and there are
no more positive numbers in the bottom row, you can find the optimal solution
easily.

7. The solution 1s as follows. Each variable in the first column has the value
appearing in the last column. All other variables are zero. The optimal
objective value is the number in the last row, last column.

e Remark

— Player II’s problem is always in standard form when we transform the
game to a linear program using the first method of section 2.4. It is
easiest to start with player Il rather than player |I.
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A Worked Example for Simplex Method

 The game with matrix

@ The problem is
Maximizeq :=r+y+ z + w
subject to

dr+y+z+3w <l 2r4+dy—-2z:—w<1. r.y.z.w > 0.
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A Worked Example for Simplex Method (conta)

In matrix form this T

Maximize ¢ ;= (1,1.1.1)

subject to

| ——|
o
H—
| -
I
.
i

w

At the end we get

1 .
v(A) = E Y v(A)(x, y.

L

Lw).
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A Worked Example for Simplex Method (conta)

We need two slack variables to convert the two inequalities to equalities. Let’s
call them s. ¢ > 0, so we have the equivalent problem

Maximizeqg=r+y+z+w+0s+ 0t
subject to

Ir4+y+z+3w+s=1,2r+4y—2z—w+t=1, r,y.z,w,s.t > 0.

The coefficients of the objective give us the vectore = (1,1, 1.1,0,0).

@ Here is where we start: (initial tableau)

Variable T Y 2 w st | Answer
s | |4 ] ] 3 1 0 1
F2 4 =2 —1 0 1 1
—¢|—-1 -1 -1 =1 0 0 0
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A Worked Example for Simplex Method (cont)

@ The pivot column is the column with the smallest number in the last row. Since
we have several choices for the pivot column (because there are four — 1s) we choose
the first column arbitrarily. Notice that the last row uses —c¢, not ¢, because the
method 1s designed to minimize, but we arc actually maximizing here.

. : . . . (1 :
Wc choose the pivot in the first column by looking at the ratios % where a 1s
)

the number in the answer column and b i1s the number in the pivot column, for each
row not including the bottom row. This gives % and % with the smaller ratio 11 This
means that the 4 in the second column is the pivot element.
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A Worked Example for Simplex Method (conta)

@ Now we row reduce the tableau using the 4 in the first column until all the
other numbers in that column are zero. Here is the next tableau after carrying out

those row operations:

Variable | x Y 2w s t | Answer
S S S S i
e Jo [ -5 -3 31| 4
< o % -t & fo|

Notice that on the leftmost (first) column we have replaced the variable s with the
variable x to indicate that the s variable is leaving (has left) and the x variable is

entering.
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A Worked Example for Simplex Method (cont)

We repeat the procedure of looking for a pivot column. We have a choice of
choosing either column with the —i on the bottom. We choose the first such column

because if we calculate the ratios we get ()/(3) = Land (3)/(%) = %, and that is

the smallest ratio. So the pivot element is the % in the third column.

After row reducing on the pivot . we get the next tableau.

Variable | @y 2 w S t | Answer
T 1 0 % {—jli % —% 1—"1
y |01 -3 -3 -7 3 :
¢ |00 -2 -% 4 11

The slack variable t has left and the variable y has entered.
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A Worked Example for Simplex Method (conta)

@The largest element in the bottom row is —g so that is the pivot column. The
pivot element in that column must be % because it is the only positive number left in

the column. So we row reduce on the %’. pivot and finally end up with the tableau

Variable | z vy =z w s t | Answer
- f T 1.3 2 1 1

2 3 01 % 3 =% 2

5 5 1 1 !

y |3 10 5§ 3 3§ 3
—C ‘ 3 0 0 2 1 0 I

The maximum objective is in the lower right corner, g = 1.
The maximum is achieved at the variables z = 1 4 = % r = 0, w = 0, because
the z and y variables are on the left column and equal the corresponding value in the

answer column. The remaining variables are zero because they are not in the variable
column.

1
We conclude that v(A) = — = 1, and Y™ = (0,
q
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A Worked Example for Simplex Method (conta)

e Todetermine X~ we write down the dual of the problem for player II:

Minimize p = b’ x
subject to

ATx >¢ and x > 0.

For convenience let’s match this up with player II's problem:

5

Maximizeg =c¢-x = (1,1,1,1)

— =

A
4 1 1 :3] y

subject to

2 4 -2 -1

-
s

ax— |

w
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A Worked Example for Simplex Method (conta)

— The cost vector is replaced by the right-hand vector of the inequality
constraints for player I, we replace A by A, and the original cost
vector ¢ becomes the inequality constraints.

— The solution of the dual is already present in the final tableau of the
primal.

* The optimal objective for the dual is the same as the primal (duality theorem).

* The optimal variables are in the bottom row corresponding to the columns headed
by the slack variables.

— Solutions: ©v(A) = 1/¢g = 1l and X* = (1,0)

* The 1 comes from s and the O comes from t.



Example 2.13

 There are two presidential candidates, Harry and Tom, who
will choose which states they will visit to garner votes. Their
pollsters estimate that if, for example, Tom goes to state 2 and
Harry goes to state 1, then Tom will lose 8 percentage points
to Harry in that state. Suppose that there are 3 states that

each candidate can select. Here is the matrix with Tom as the
row player:

Tom/Harry | State |  State 2  State 3
State 1 12 9 14
State 2 8 7 12

State 3 11 —10 10



Example 2.13 (conta)

e Use linear programming to solve this problem.

— Step one is to set up the linear program for player Il.

Maximize zy = q, + g2 + g3
subject to

J.Z(;-'l — 9(}'2 + 1—1-{}; < 1, —8(}1 -+ ?lf,’g + 12{_{.‘; < 1. l]t‘f] ][](lf_l T ]“f’{-{ < 1,

and q1,q2.q3 = 0.

— Set up the initial tableau.

Variables G1 g> Q3 S1  S2  S3 | Answer
s1 |12 -9 14 1 0 0 1
Sy | —8 T 12 0 1 0 1
S3 11 —-10 10 0 0 1 1
21 —1 —1 —1 ] 0 0 0
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Example 2.13 (conta)

— After pivoting on the 12 in the second column, we replace s; by g; in the

first column:

Variables | ¢1 ¢ q3 s1 S2  S3 | Answer
o |1 -3 I % oo o &
52 0o (1 % 2 1 0 2
53 0 —-_z— —% —}—é 0 1 '-l!i
2 o - L L 0 0 a
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Example 2.13 (conta)

— Finally, we pivot on the 1 in the third column and arrive at the final

tableau:
Variables | q1  ¢» g3 S1 So2  S3 | Answer
R T )
g 0 1 % 2 1 0 3
$3 o o0 2 + I 1 3
21 o 0o L 2 I 9 3
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Example 2.13 (conta)

— Read off the information:
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e State 3 is never to be visited by either Tom or Harry.

* Tom should visit state 1, 5 out of 12 times and state 2, 7 out of 12 times.
* Harry should visit state 1, 4 out of 9 times and state 2, 5 out of 9 times.
* Tom ends up with a net gain of v(A) = 0.33%.
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Example 2.13 (conta)

— Check these results with the Maple commands:

> with (LinearAlgebra):

> value:=proc(A,rows,cols)
local X,Y,B,C,cnstx,cnsty,vI,vII,vu,vl;
X:=Vector (rows,symbol=x):
Y:=Vector(cols,symbol=y):
B:=Transpose(X) .A; C:=A.Y;
cnsty:={seq(C[jl<=vII,j=1..rows),add(y[j],j=1..cols)=1}:
cnstx:={seq(B[i]>=vI,i=1..cols),add(x[i],i=1..rows)=1}:
with(simplex):
vu:=maximize(vI,cnstx,NONNEGATIVE);
vl:=minimize(vII,cnsty,NONNEGATIVE) ;
print(vu,vl);

end:

> City:=Matrix([[12,-9,14],([-8,7,12],[11,-10,10]]);
> value(City,3,3);
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A Game Theory Model of Economic
Growth



Economic Growth

 An economy has many goods (or goods and services), and
there are many activities to produce the goods and services.

— The input process is:
Amountof goodi = 1,2,..., nused by process j = 1,2,....m,1s = a;;y; = 0.

The output process is:

Amountof goodi = 1.2,..., n. produced by process j is = b;jy; = 0.
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Economic Growth (conta)

— It 1s assumed that the constants a;; > 0.b;; > 0, for all 7, j. Set the matrices
:1”3.( m — (ﬂ!‘j‘]‘ and B = (bU)
— For the time being we also consider two constants:

pq, = rate of growth of goods and services . (2.6.1)

p = rate of growth of money = risk-free interest rate. (2.6.2)
— Since all prices and intensities must be nonnegative

pi=0, 1=12,...,n, y; 20, 7=12,....m.
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Economic Growth (conta)

— Assume that every row and every column of the matrices A and B has
at least one positive element. This implies that

T I

Y a; >0 =012....m and » by >0,i=12...,n

i=1 =1

— The economic meaning is that every process requires at least one
good, and every good is produced by at least one process.
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Input and Output Model

 Summary of the input/output model in matrix form:
I. By = p,Ay.
2. plpyA— B)y = 0.
3. p.pA > pB.
4. p(pmA -~ B)y = 0.

N

pBy > 0.
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Input and Output Model (conta)

— Condition 1 says that the output of goods must grow by a factor of p,,.
— Condition 2 says that if any component of (p,A — B)y < 0, then p;, = 0.
* When demand is exceeded by supply, the price of that good will be zero.

Conversely, if p; > 0., the price of good i 18 positive, then l{ﬂﬂfl — B}yi ; = 0.

* The output of good i is exactly balanced by the input of good .
— Conditions 3, 4 have a similar economic interpretation but for prices.
— Condition 5 is that p;bi;y; > 0 foratleast one 7 and j since the economy

must produce at least one good with a positive price and with positive intensity.
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A Game Theory Model of Economic Growth

e Conclusion 1. For an economy satisfying the assumptions of the input/output
model, it must be true that the growth factor for goods must be the same as the growth
rate of money p, = p,.

Proof. Using Conditions 1-5, we first have

plp,A— By =0 — p,pAy = pBy >0
and
plpnA—-DB)y =0 — p,pAy = pBy.
so that
pePAY = p.pAy > 0.

Because this result is strictly positive, by dividing by pAy we may conclude that
Pg = Pr. L]
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A Game Theory Model of Economic Growth (cont)

— Let p = p, = pr. From the conditions |-5, we have the inequalities

p(pA—DB)>0=>(pA— B)y. (2.6.3)
In addition

pipA — B)y =0 = p(pA — D)y. (2.6.4)
— Consider the two-person zero sum game with matrix pA — B.

This game has v(pA — B), (X*.Y ™). satisfying the saddle point condition

X(pA—B)Y  <wv(pA—-B) < X" (pA—-DB)Y, forall X € §5,,.Y € 5,,.

— It would be nice if there were a constant p = pg so that v(pg A — B) = 0.

because then the saddle condition becomes

X(ppA—B)Y*" <0< X" (pgA— B)Y. forall X € 5,.Y € §5,,.
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A Game Theory Model of Economic Growth (cont)

[n particular, for every row and column E(i.Y") <0 < EF(X ", j).

or in matrix form
(ppA— B)Y" <0< X" (ppA — B).
which is exactly the same as (2.6.3) with p replaced by X *
and y replaced by Y'*,
— In addition, v(pyA — B) = 0 = X" (ppA — B)Y ™, which is the
same as (2.6.4) with p replaced by X* and y replaced by Y *.
— p = X" and y = Y" can be considered as normalized prices

and intensities |
— We may assume without loss of generality from the beginning that

2_Pi = Yj =
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A Game Theory Model of Economic Growth (cont)

* Conclusion 2. There is a constant py > 0 (which is unique if a;; + b;; > 0) and
price and intensity vectors p.y so that pBy > 0.

pP(pA—B) 202> (pA - By,

and
p(pA — B)y =0 =p(pA— B)y.

In other words, there is a pg > 0 such that value(pgpA — B) = 0, there is a saddle
point (¥ ,,. Py, ). and the saddle point satisfies p,, By,, > 0.
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A Game Theory Model of Economic Growth (cont)

Proof. We will show only that in fact there is pg satisfying v(ppA — B) = 0. If
we set f(p) = value(pA — B), we have f(0) = value(—B). Let (X.Y) be optimal
strategies for the game with matrix — /3. Then

value(—B) = min Eg(X,j) = minZ(— bij)r; <0
J )

1=1

because we are assuming that at least one b;; > 0 and at least one r; must be positive.
Since every row of A has at least one strictly positive element a,;, itis always possible
to find a large enough p > 0 so that f(p) > 0. Since f(p) is a continuous function,
the intermediate value theorem of calculus says that there must be at least one pg > 0
for which f(pg) = 0. ]

— There is a set of equilibrium prices, intensity levels, and growth rate of
money that permits the expansion of the economy.
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Example 2.14

e Consider the input/output matrices

0 2 | 2 1 3
A L 1 2}’5_[2 3 1}

— We will find the p > 0 so that value(pA — B) = 0,
— Notice that @;; + b;; > 0 so there is only one py > 0 which will work.
— Use Maple to find p. The commands we use are as follows:

>with(LinearAlgebra):

>value:=proc(A,rows,cols)
local X,Y,B,C,cnstx,cnsty,vI,vII,vu,vl;
X:=Vector(rows,symbol=x): Y:=Vector(cols,symbol=y):
B:=Transpose(X) .A;
C:=A.Y;
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Example 2.14 (conta)

cnsty:={seq(C[jl<=vII, j=1..rows),add(y[j],j=1..cols)=1}:
cnstx:={seq(B[i]>=vI,i=1..cols),add(x[i],i=1..rows)=1}:
vu:=maximize(vI,cnstx,NONNEGATIVE) ;
vl:=minimize(vII,cnsty,NONNEGATIVE) ;

print (vu,vl);

end:

> A:=a->Matrix([[-2,2*a-1,a-3],[3*a-2,a-3,2*a-1]]);

> # This is the matrix (a A-B) as a function of a>0;

> Bl:=a->A(a)+ConstantMatrix(5,2,3);

> # This command adds a constant (5) to each element of A(a) so

> # that the value is not close to zero. We subtract 5 at the end to
> # get the actual value.

> value(B1(1.335),2,3);
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Example 2.14 (conta)

— By plugging in various values of a , we get

value(B1(0),2,3) =3 — value(0A - B) =3 -5 = -2
value(B1(2),2,3) = 6 — value(2A - B) =6 -5 =1
value(B1(1.5),2.3) = 5.25 — wvalue(l1.5A — B) =5.25 -5 =0.25

value(B1(1.335),2,3) = 5.0025
— value(1.335A — B) = 5.0025 — 5 = 0.0025.

We eventually arrive at the conclusion that when a = 1.335, we have
value(B1(1.335),2,3) = value(aA — B + 5) = 5.0025.

Subtracting 5, we get value(1.335A— B) = 0, and so py = 1.335. The optimal
strategiesare p = X = (3,3),andy =Y = (0,3, ).
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Newton's Method

e A sketch of the proof of a useful result to use Newton's
method to calculate 7o-
— To do that, we need the derivative of f(p) = value(pA — B).
Here is the derivative from the right:
i value((p+ h)A — B) — value(pA — B)
h—0+ h

= max min X (pA-B)Y",
X€S,(A) YES,, (A)

where S, (A) denotes the set of strategies that are optimal for the
game with matrix A. Similarly, S, (A) is the set of strategies for player I
that are optimal for the game with matrix A.
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Newton's Method (conta)

Proof. Suppose that (X", Y") are optimal for A;, = (p+h)A — Band (X?,Y?)
are optimal for A, = pA — B. Then, if we play X" against Y”, we get

value((p+h)A — B) < X"((p+ h)A - B)Y""
= X"(pA— B)Y*T + hXhAye?
< value(pA — B) + hX"AY*",

The last inequality follows from the fact that value(pA — B) > X" (pA — B)Y P
because Y is optimal for pA — B. In a similar way, we can see that

value((p+ h)A — B) > (value(pA — B) + hXPAY"!).
Putting them together, we have

value(pA—B)+hX?AY" < value((p+h)A—B) < value(pA—B)+hX" Ay ",
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Newton's Method (conta)

Now, divide these inequalities by & > 0 to get

value((p + h)A — B) — value(pA — B)

X;JA}FJLT <
- h

< X"pA—-BY""

Let h — O+ . Since X" € §,.Y" € S,,, these strategies, as a function of
h, are bounded uniformly in h. Consequently, as h — 0, it can be shown that
X" 5 X e S, (pA—B)andY" - Y* € S,,(pA — B). We conclude that

veAV*T < Yim value((p + h)A — B) — value(pA — B)

< X*AY*PT
T h—04 h - ’

or
XPAY*T < fl(p), < XTAYPT.
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Newton's Method (conta)

Consequently, we obtain
min max  XAYT < f'(p).
YeS(pA—-B) XeS,, (pA-B)

< min X*Ay et
YES, (pA—B)

< max min XAYT,
XES, (pA—B)YES, (pA-B)

Since
| max min XAY! < min max XAYT,
XNeS, (pA-—B)YeS, (pA-B) YeES, (pA-B) XeS, (pA—-B)

we have shown that

, .. value((p+ h)A — B) — value(pA — D)
Fle)+ = hl—l{llll—i— h

max min xaAy”T.
XesS,(pA-B)YesS, (pA-D) [:
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Newton's Method (conta)

e Special case

A special case of this result i1s that for any matrix 1), « ,,,, we have a sort of formula
for the directional derivative of ©( A) in the direction D:

. v(A+hD) - v(A) ‘ ,
lim — max min XDYT.
h—0+ h XeS, (AYES, (A

In particular, if we fix any payoff entry of A, say, a,;. and take D to be the matrix
consisting of all zeros except for d;; = 1, we get a formula for the partial derivative
of v(A) with respect to the components of A:

dv(A , T , |
: (4) — max min XDY? = ( max z;)( min yj). (2.6.5)
dagj . XESa(A)YES(A) XES,(A) YeES,(A)
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